Extracellular K+ and Ca2+ changes during epileptiform discharges in the immature rat neocortex.

Academic Article


  • Picrotoxin-induced epileptiform activity was examined in neocortical slices prepared from 8- to 15-day-old rats. This activity consisted of spontaneous bursts of 3-5 discharges that resembled interictal spikes and were interspersed with ictal-like paroxysms lasting 10-30 s. Measurements of extracellular potassium ([K+]o) and calcium ([Ca2+]o) were made during these spontaneous epileptiform events, using ion-sensitive electrodes. Individual interictal spikes were associated with [Ca2+]o decreases of 0.1-0.2 mM, whereas sustained ictal-like discharges were accompanied by decreases of 0.3-0.4 mM. Measurement of [K+]o showed that individual interictal spikes were associated with increases in [K+]o up to 12 mM, whereas increases to more than 20 mM accompanied long-lasting ictal-like discharges. Maximum increases in [K+]o were observed ca. 600 microns below the pial surface. [K+]o increases were followed by undershoots of the resting [K+]o level. The unusually high [K+]o levels associated with epileptiform discharges in the immature neocortex suggest that disturbances in [K+]o regulation may contribute to the generation of the picrotoxin-induced, spontaneous, prolonged ictal-like discharges observed in the 8- to 15-day age group.
  • Authors

    Published In

  • Brain Research  Journal
  • Author List

  • Hablitz JJ; Heinemann U
  • Start Page

  • 299
  • End Page

  • 303
  • Volume

  • 433
  • Issue

  • 2