A novel mutation in DNA topoisomerase I of yeast causes DNA damage and RAD9-dependent cell cycle arrest

Academic Article


  • DNA topoisomerases, enzymes that alter the superhelicity of DNA, have been implicated in such critical cellular functions as transcription, DNA replication, and recombination. In the yeast Saccharomyces cerevisiae, a null mutation in the gene encoding topoisomerase I (TOP1) causes elevated levels of mitotic recombination in the ribosomal DNA (rDNA) but has little effect on growth. We have isolated a missense mutation in TOP1 that causes mitotic hyper-recombination not only in the rDNA, but also at other loci, in addition to causing a number of other unexpected phenotypes. This topoisomerase I mutation (top1-103) causes slow growth, constitutive expression of DNA damage-inducible genes, and inviability in the absence of the double-strand break repair system. Overexpression of top1-103 causes RAD9-dependent cell cycle arrest in G2. We show that the Top1-103 enzyme nicks DNA in vitro, suggesting that it damages DNA directly. We propose that Top1-103 mimics the action of wild-type topoisomerase I in the presence of the anti-tumor drug, camptothecin.
  • Author List

  • Levin NA; Bjornsti MA; Fink GR
  • Start Page

  • 799
  • End Page

  • 814
  • Volume

  • 133
  • Issue

  • 4