Loss of TGF-β or Wnt5a results in an increase in Wnt/β-catenin activity and redirects mammary tumour phenotype

Academic Article


  • Introduction: The tumour-suppressive effects of transforming growth factor-beta (TGF-β) are well documented; however, the mechanistic basis of these effects is not fully understood. Previously, we showed that a non-canonical member of the Wingless-related protein family, Wnt5a, is required for TGF-β-mediated effects on mammary development. Several lines of evidence support the hypothesis that Wnt5a acts as a tumour suppressor. In addition, it has been shown that Wnt5a can antagonise canonical Wnt/β-catenin signalling in various cell types. Here we test the hypothesis that TGF-β and Wnt5a can antagonise Wnt/β-catenin signalling and redirect mammary tumour phenotype. The results provide a new mechanism for the tumour-suppressive effects of TGF-β.Methods: Wnt/β-catenin signalling was measured in tumours with altered TGF-β (dominant-negative TGF-β type II receptor, DNIIR) or Wnt5a (Wnt5a-/-) signalling as the accumulation of nuclear β-catenin using both confocal microscopy and cell fractionation. RT-PCR was used to measure the expression of Wnt/β-catenin target genes. Sca1 expression was determined by western blot and keratin (K) 6- and K14-positive populations were determined by immunohistochemistry.Results: Loss of TGF-β or Wnt5a signalling resulted in stabilisation of nuclear β-catenin and expression of Wnt/β-catenin target genes suggesting that TGF-β and Wnt5a act to inhibit Wnt/β-catenin signalling in mammary epithelium. Increased expression of Sca-1 was observed in developing DNIIR and Wnt5a-/- mammary glands. DNIIR and Wnt5a-/- tumours demonstrated an expanded population of K6- and K14-expressing cells typically seen in Wnt/β-catenin-induced tumours.Conclusions: The key findings here are that: TGF-β and Wnt5a regulate Wnt/β-catenin activity; and loss of TGF-β and Wnt5a redirect the phenotype of tumours so that they resemble tumours induced by activation of Wnt/β-catenin. The findings suggest a new mechanism for the tumour-suppressive effects of TGF-β. © 2009 Roarty et al.; licensee BioMed Central Ltd.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Roarty K; Baxley SE; Crowley MR; Frost AR; Serra R
  • Volume

  • 11
  • Issue

  • 2