CD38 induces apoptosis of a murine pro-B leukemic cell line by a tyrosine kinase-dependent but ADP-ribosyl cyclase- and NAD glycohydrolase-independent mechanism

Academic Article


  • Cross-linking of CD38 on hematopoietic cells induces activation, proliferation and differentiation of mature T and B cells and mediates apoptosis of myeloid and lymphoid progenitor cells. In addition to acting as a signaling receptor, CD38 is also an enzyme capable of producing several calcium-mobilizing metabolites, including cyclic adenosine diphosphate ribose (cADPR). It has been previously postulated that the calcium-mobilizing metabolites produced by CD38 may regulate its receptor-based activities. To test this hypothesis, we examined whether the enzyme activity of CD38 controls the apoptosis of an anti-CD38-stimulated leukemic B cell. We show that anti-CD38-induced apoptosis of Ba/F3 cells, a murine pro-B cell line, is not affected by blocking the calcium-mobilizing activity of cADPR or by inhibiting intracellular or extracellular calcium mobilization. In addition, we demonstrate that blocking CD38 enzyme activity with 2′-deoxy-2′-fluoro-nicotinamide arabinoside adenine dinucleotide has no effect on apoptosis and that Ba/F3 cells expressing catalytically inactive mutant forms of CD38 still undergo apoptosis upon CD38 cross-linking. Instead, we find that anti-CD38-induced apoptosis is dependent on tyrosine kinase and caspase activation, and that this process appears to be potentiated by the presence of membrane microdomains. Thus, the receptor-mediated functions of CD38 can be separated from its enzyme activity in a murine leukemic cell line, suggesting that CD38 plays multiple, but independent, biologic roles. © 2006 Oxford University Press.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Lund FE; Muller-Steffner H; Romero-Ramirez H; Moreno-García ME; Partida-Sánchez S; Makris M; Oppenheimer NJ; Santos-Argumedo L; Schuber F
  • Start Page

  • 1029
  • End Page

  • 1042
  • Volume

  • 18
  • Issue

  • 7