The expression and modulation of IL-1α in murine keratinocytes

Academic Article


  • Murine and human keratinocytes produce no IL-1-like factor that appears to be similar if not identical to monocyte-derived IL-1. IL-1 may be an important mediator in cutaneous inflammatory responses, however, little is currently known concerning factors that may modulate IL-1 expression in keratinocytes. To address this issue we examined the effect of LPS, UV, and the cell differentiation state on murine keratinocyte IL-1 mRNA expression. Our results indicated that as with the murine P388D1 monocyte cell line, PAM 212 keratinocytes constitutively express abundant amounts of IL-1α mRNA. On exposure to LPS (100 μg/ml) for 8 h there was more than 100 times the increase in PAM 212 IL-1α mRNA which was accompanied by a sixfold increase in supernatant IL-1 activity. Similarly UV irradiation had a significant effect on keratinocyte IL-1α expression. High dose UV (300 mJ/cm2) inhibited PAM 212 IL-1α expression at 4, 8, 24, 48 h post-UV whereas a lower dose of UV (100 mJ/cm2) inhibited UV at 4 and 8 h post-UV, but induced IL-1 expression at 24 and 48 h post-UV. The expression of IL-1α varied with the differentiation state of the keratinocytes. Freshly removed newborn murine keratinocytes were found to constitutively express IL-1α mRNA. Keratinocytes grown in low [Ca2+] tissue culture media (0.005 mM) for 6 days, functionally and phenotypically become undifferentiated and express increased quantities of IL-1α mRNA, whereas cells grown in high [Ca2+] media (1.2 mM) for 6 days become terminally differentiated and IL-1 expression ceased. Keratinocytes cultured for 3 days in low [Ca2+] conditions expressed an intermediate level of IL-1α. In contrast, little or no IL-1β mRNA was detected in either the PAM 212 cells or newborn murine keratinocytes. Thus LPS, UV, and cell differentiation state have a significant effect on expression of IL-1α in murine keratinocytes.
  • Published In

    Author List

  • Ansel JC; Luger TA; Lowry D; Perry P; Roop DR; Mountz JD
  • Start Page

  • 2274
  • End Page

  • 2278
  • Volume

  • 140
  • Issue

  • 7