Pulmonary artery enlargement is associated with cardiac injury during severe exacerbations of COPD

Academic Article

Abstract

  • BACKGROUND: Relative pulmonary arterial enlargement, defined by a pulmonary artery to aorta (PA/A) ratio > 1 on CT scanning, predicts hospitalization for acute exacerbations of COPD (AECOPD). However, it is unclear how AECOPD affect the PA/A ratio. We hypothesized that the PA/A ratio would increase at the time of AECOPD and that a ratio > 1 would be associated with worse clinical outcomes. METHODS: Patients discharged with an International Classification of Diseases, Ninth Revision, diagnosis of AECOPD from a single center over a 5-year period were identified. Patients were included who had a CT scan performed during the stable period prior to the index AECOPD episode as well as a CT scan at the time of hospitalization. A subset of patients also underwent postexacerbation CT scans. The pulmonary arterial diameter, ascending aortic diameter, and the PA/A ratio were measured on CT scans. Demographic data, comorbidities, troponin level, and hospital outcome data were analyzed. RESULTS: A total of 134 patients were included in the study. They had a mean age of 65 ± 10 years, 47% were male, and 69% were white; overall, patients had a mean FEV1 of 47% ± 19%. The PA/A ratio increased from baseline at the time of exacerbation (0.97 ± 0.15 from 0.91 ± 0.17; P < .001). Younger age and known pulmonary hypertension were independently associated with an exacerbation PA/A ratio > 1. Patients with PA/A ratio > 1 had higher troponin values. Those with a PA/A ratio > 1 and troponin levels > 0.01 ng/mL had increased acute respiratory failure, ICU admission, or inpatient mortality compared with those without both factors (P=.0028). The PA/A ratio returned to baseline values following AECOPD. CONCLUSIONS: The PA/A ratio increased at the time of severe AECOPD and a ratio > 1 predicted cardiac injury and a more severe hospital course.
  • Published In

  • Chest  Journal
  • Digital Object Identifier (doi)

    Author List

  • Michael Wells J; Morrison JB; Bhatt SP; Nath H; Dransfield MT
  • Start Page

  • 1197
  • End Page

  • 1204
  • Volume

  • 149
  • Issue

  • 5