Evaluation of immunoglobulin A1 (IgA1) protease and IgA1 protease- inhibitory activity in human female genital infection with Neisseria gonorrhoeae

Academic Article


  • Immunoglobulin A1 (IgA1) protease, an enzyme that selectively cleaves human IgA1, may be a virulence factor for pathogenic organisms such as Neisseria gonorrhoeae. Host protection from the effects of IgA1 protease includes antibody-mediated inhibition of IgA1 protease activity, and it is believed that the relative balance between IgA1 protease and inhibitory antibodies contributes to the pathogenesis of disease caused by IgA1 protease-producing organisms. We have examined the levels of these two opposing factors in genital tract secretions and sera from women with uncomplicated infection with N. gonorrhoeae. When IgA1 in cervical mucus was examined by Western blotting, no evidence of cleavage fragments characteristic of IgA1 protease activity was seen in gonococcus-infected or control patients. Cleavage fragments typical of IgA1 protease were detected, however, after the addition of exogenous IgA1 protease to cervical mucus. Degraded IgA1 was detected in some vaginal wash samples, but the fragment pattern was not typical of IgA1 protease activity. All N. gonorrhoeae isolates from the infected patients produced IgA1 protease in vitro. All but two serum samples and 16 of 65 cervical mucus samples displayed inhibitory activity against gonococcal IgA1 protease, but there was no significant difference in the level of inhibitory activity between gonococcus-infected and noninfected patients in either cervical mucus or serum. There was no difference in the levels of IgA1 protease-inhibitory activity in serum or cervical mucus collected from patients at recruitment and 2 weeks later. These results suggest that cleavage of IgA1 by gonococcal IgA1 protease within the lumen of the female lower genital tract is unlikely to be a significant factor in the pathogenesis of infections by N. gonorrhoeae.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Hedges SR; Mayo MS; Kallman L; Mestecky J; Hook EW; Russell MW
  • Start Page

  • 5826
  • End Page

  • 5832
  • Volume

  • 66
  • Issue

  • 12