Surface Density-Induced Pleating of a Lipid Monolayer Drives Nascent High-Density Lipoprotein Assembly

Academic Article

Abstract

  • Summary Biogenesis of high-density lipoproteins (HDL) is coupled to the transmembrane protein, ATP-binding cassette transporter A1 (ABCA1), which transports phospholipid (PL) from the inner to the outer membrane monolayer. Using a combination of computational and experimental approaches, we show that increased outer lipid monolayer surface density, driven by excess PL or membrane insertion of amphipathic helices, results in pleating of the outer monolayer to form membrane-attached discoidal bilayers. Apolipoprotein (apo)A-I accelerates and stabilizes the pleats. In the absence of apoA-I, pleats collapse to form vesicles. These results mimic cells overexpressing ABCA1 that, in the absence of apoA-I, form and release vesicles. We conclude that the basic driving force for nascent discoidal HDL assembly is a PL pump-induced surface density increase that produces lipid monolayer pleating. We then argue that ABCA1 forms an extracellular reservoir containing an isolated pressurized lipid monolayer decoupled from the transbilayer density buffering of cholesterol.
  • Authors

    Published In

  • Structure  Journal
  • Digital Object Identifier (doi)

    Pubmed Id

  • 6283183
  • Author List

  • Segrest JP; Jones MK; Catte A; Manchekar M; Datta G; Zhang L; Zhang R; Li L; Patterson JC; Palgunachari MN
  • Start Page

  • 1214
  • End Page

  • 1226
  • Volume

  • 23
  • Issue

  • 7