Chronic activation of peroxisome proliferator-activated receptor-α with fenofibrate prevents alterations in cardiac metabolic phenotype without changing the onset of decompensation in pacing-induced heart failure

Academic Article

Abstract

  • Severe heart failure (HF) is characterized by profound alterations in cardiac metabolic phenotype, with down-regulation of the free fatty acid (FFA) oxidative pathway and marked increase in glucose oxidation. We tested whether fenofibrate, a pharmacological agonist of peroxisome proliferator-activated receptor-α, the nuclear receptor that activates the expression of enzymes involved in FFA oxidation, can prevent metabolic alterations and modify the progression of HF. We administered 6.5 mg/kg/day p.o. fenofibrate to eight chronically instrumented dogs over the entire period of high-frequency left ventricular pacing (HF + Feno). Eight additional HF dogs were not treated, and eight normal dogs were used as a control. [3H]Oleate and [ 14C]Glucose were infused intravenously to measure the rate of substrate oxidation. At 21 days of pacing, left ventricular end-diastolic pressure was significantly lower in HF + Feno (14.1 ± 1.6 mm Hg) compared with HF (18.7 ± 1.3 mm Hg), but it increased up to 25 ± 2 mm Hg, indicating end-stage failure, in both groups after 29 ± 2 days of pacing. FFA oxidation was reduced by 40%, and glucose oxidation was increased by 150% in HF compared with control, changes that were prevented by fenofibrate. Consistently, the activity of myocardial medium chain acyl-CoA dehydrogenase, a marker enzyme of the FFA β-oxidation pathway, was reduced in HF versus control (1.46 ± 0.25 versus 2.42 ± 0.24 μmol/min/gram wet weight (gww); p < 0.05) but not in HF + Feno (1.85 ± 0.18 μmol/min/gww; N.S. versus control). Thus, preventing changes in myocardial substrate metabolism in the failing heart causes a modest improvement of cardiac function during the progression of the disease, with no effects on the onset of decompensation. Copyright © 2007 by The American Society for Pharmacology and Experimental Therapeutics.
  • Authors

    Digital Object Identifier (doi)

    Author List

  • Labinskyy V; Bellomo M; Chandler MP; Young ME; Lionetti V; Qanud K; Bigazzi F; Sampietro T; Stanley WC; Recchia FA
  • Start Page

  • 165
  • End Page

  • 171
  • Volume

  • 321
  • Issue

  • 1