On the Stability of Periodic Waves for the Cubic Derivative NLS and the Quintic NLS

Academic Article

Abstract

  • We study the periodic cubic derivative nonlinear Schrödinger equation (DNLS) and the (focussing) quintic nonlinear Schrödinger equation (NLS). These are both L2 critical dispersive models, which exhibit threshold-type behavior, when posed on the line R. We describe the (three-parameter) family of non-vanishing bell-shaped solutions for the periodic problem, in closed form. The main objective of the paper is to study their stability with respect to co-periodic perturbations. We analyze these waves for stability in the framework of the cubic DNLS. We provide criteria for stability, depending on the sign of a scalar quantity. The proof relies on an instability index count, which in turn critically depends on a detailed spectral analysis of a self-adjoint matrix Hill operator. We exhibit a region in parameter space, which produces spectrally stable waves. We also provide an explicit description of the stability of all bell-shaped traveling waves for the quintic NLS, which turns out to be a two-parameter subfamily of the one exhibited for DNLS. We give a complete description of their stability—as it turns out some are spectrally stable, while other are spectrally unstable, with respect to co-periodic perturbations.
  • Digital Object Identifier (doi)

    Author List

  • Hakkaev S; Stanislavova M; Stefanov A
  • Volume

  • 31
  • Issue

  • 3