Quantitative signature for architectural organization of regulatory factors using intranuclear informatics

Academic Article


  • Regulatory machinery for replication and gene expression is punctately organized in supramolecular complexes that are compartmentalized in nuclear microenvironments. Quantitative approaches are required to understand the assembly of regulatory machinery within the context of nuclear architecture and to provide a mechanistic link with biological control. We have developed 'intranuclear informatics' to quantify functionally relevant parameters of spatially organized nuclear domains. Using this informatics strategy we have characterized post-mitotic re-establishment of focal subnuclear organization of Runx (AML/Cbfa) transcription factors in progeny cells. By analyzing point mutations that abrogate fidelity of Runx intranuclear targeting, we establish molecular determinants for the spatial order of Runx domains. Our novel approach provides evidence that architectural organization of Runx factors may be fundamental to their tissue-specific regulatory function.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Young DW; Zaidi SK; Furcinitti PS; Javed A; van Wijnen AJ; Stein JL; Lian JB; Stein GS
  • Start Page

  • 4889
  • End Page

  • 4896
  • Volume

  • 117
  • Issue

  • 21