New insights provided by a comparison of impaired deformability with erythrocyte oxidative stress for sickle cell disease

Academic Article


  • Sickle cell disease (SCD) is associated with increase in oxidative stress and irreversible membrane changes that originates from the instability and polymerization of deoxygenated hemoglobin S (HbS). The relationship between erythrocyte membrane changes as assessed by a decrease in deformability and oxidative stress as assessed by an increase in heme degradation was investigated. The erythrocyte deformability and heme degradation for 27 subjects with SCD and 7 with sickle trait were compared with normal healthy adults. Changes in both deformability and heme degradation increased in the order of control to trait to non-crisis SCD to crisis SCD resulting in a very significantly negative correlation between deformability and heme degradation. However, a quantitative analysis of the changes in deformability and heme degradation for these different groups of subjects indicated that sickle trait had a much smaller effect on deformability than on heme degradation, while crisis affects deformability to a greater extent than heme degradation. These findings provide insights into the relative contributions of erythrocyte oxidative stress and membrane damage during the progression of SCD providing a better understanding of the pathophysiology of SCD. © 2013.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Barodka VM; Nagababu E; Mohanty JG; Nyhan D; Berkowitz DE; Rifkind JM; Strouse JJ
  • Start Page

  • 230
  • End Page

  • 235
  • Volume

  • 52
  • Issue

  • 4