The use of replication-competent viruses that have a cytolytic cycle has emerged as a viable strategy (oncolytic virotherapy) to specifically kill tumor cells and the field has advanced to the point of clinical trials. A theoretical advantage of replicative oncolytic viruses is that their numbers should increase via viral replication within infected tumor cells and resulting viral progeny can then infect additional cells within the tumor mass. The life cycle of a virus involves multiple interactions between viral and cellular proteins/genes, which maximize the ability of the virus to infect and replicate within cells. Understanding such interactions has led to the design of numerous genetically engineered adenovirus (Ad) vectors that selectively kill tumor cells while sparing normal cells. These viruses have also been modified to function as therapeutic gene delivery vehicles, thus augmenting their anticancer capacity. In addition, the oncolytic mode of tumor killing differs from that of standard anticancer therapies, providing the possibility for synergistic interactions with other therapies in a multimodal antitumor approach. In this review, we describe the oncolytic Ad vectors tested in preclinical and clinical models and their use in combination with chemo-, radio-, and gene therapies.