Incorporating Ploidy Diversity into Ecological and Community Genetics

Academic Article


  • Studies in ecological and community genetics have advanced our understanding of the role of intraspecific diversity in structuring communities and ecosystems. However, in near-shore marine communities, these studies have mostly been restricted to seagrasses, marsh plants, and oysters. Yet, macroalgae are critically important ecosystem engineers in these communities. Greater intraspecific diversity in a macroalgal ecosystem engineer should result in higher primary and secondary production and community resilience. The paucity of studies investigating the consequences of macroalgal intraspecific genetic variation might be due, in part, to the complexity of macroalgal life cycles. The majority of macroalgae have seemingly subtle, but in actuality, profoundly different life cycles than the more typical animal and angiosperm models. Here, we develop a novel genetic diversity metric, PHD, that incorporates the ratio of gametophytic to sporophytic thalli in natural populations. This metric scales from 0 to 1 like many common genetic diversity metrics, such as genotypic richness, enabling comparisons among metrics. We discuss PHD and examples from the literature, with specific reference to the widespread, red seaweed Agarophyton vermiculophyllum. We also discuss a sex diversity metric, PFM, which also scales from 0 to 1, but fewer studies have identified males and females in natural populations. Nevertheless, by incorporating these novel metrics into the repertoire of diversity metrics, we can explore the role of genetic diversity in community and ecosystem dynamics with an emphasis on the unique biology of many macroalgae, as well as other haplodiplontic taxa such as ferns, foraminiferans, and some fungi.
  • Digital Object Identifier (doi)

    Author List

  • Krueger-Hadfield SA; Blakeslee AMH; Fowler AE
  • Start Page

  • 1198
  • End Page

  • 1207
  • Volume

  • 55
  • Issue

  • 6