Cell-specific deletion of PGC-1α from medium spiny neurons causes transcriptional alterations and age-related motor impairment

Academic Article


  • Multiple lines of evidence indicate that a reduction in the expression and function of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is associated with neurodegeneration in diseases such as Huntington’s disease (HD). Polymorphisms in the PGC-1α gene modify HD progression and PGC-1α expression is reduced in striatal medium spiny neurons (MSNs) of HD patients and mouse models. However, neither the MSN-specific function of PGC-1α nor the contribution of PGC-1α deficiency to motor dysfunction is known. We identified novel, PGC-1α-dependent transcripts involved in RNA processing, signal transduction, and neuronal morphology and confirmed reductions in these transcripts in male and female mice lacking PGC-1α specifically in MSNs, indicating a cell-autonomous effect in this population. MSN-specific PGC-1α deletion caused reductions in previously identified neuronal and metabolic PGC-1α-dependent genes without causing striatal vacuolizations. Interestingly, these mice exhibited a hypoactivity with age, similar to several HD animal models. However, these newly identified PGC-1α-dependent genes were upregulated with disease severity and age in knock-in HD mouse models independent of changes in PGC-1α transcript, contrary to what would be predicted from a loss-of-function etiological mechanism. These data indicate that PGC-1α is necessary for MSN transcriptional homeostasis and function with age and that, whereas PGC-1α loss in MSNs does not replicate an HD-like phenocopy, its downstream genes are altered in a repeat-length and age-dependent fashion. Understanding the additive effects of PGC-1α gene functional variation and mutant huntingtin on transcription in this cell type may provide insight into the selective vulnerability of MSNs in HD.
  • Digital Object Identifier (doi)

    Author List

  • McMeekin LJ; Li Y; Fox SN; Rowe GC; Crossman DK; Day JJ; Li Y; Detloff PJ; Cowell RM
  • Start Page

  • 3273
  • End Page

  • 3286
  • Volume

  • 38
  • Issue

  • 13