Structure of the nucleotide-binding domain of Plasmodium falciparum Rab6 in the GDP-bound form

Academic Article


  • Rab proteins are small Ras-like GTPases which play important roles in regulating intracellular vesicle trafficking. The nucleotide-binding domain of Rab6 from the malaria parasite Plasmodium falciparum was crystallized with GDP bound to the active site. The MAD phasing technique was used to determine the crystal structure to 2.3 Å resolution. Comparisons of the structure of GDP-bound PfRab6 with the recently determined structures of Rab3A in complex with either a GTP analog or with GTP and Rabphillin present structural evidence supporting the traditional model for the molecular GTP/GDP switch in Rab proteins. PfRab6 residues homologous to those distinguishing human Rab6 isoforms, which differ in binding to Rabkinesin-6 in human cells, are located next to the recognized complementarity-determining region (CDR) and constitute a conceptual broadening of that domain. Despite significant observable differences in Golgi ultrastructure, the Rab6 core structure and switch mechanism appear highly conserved when compared with murine Rab3a structures. A significant difference between the PfRab6 and higher eukaryotic Rabs may be the lack of CDR features that allow binding interactions with Rabkinesin-type effectors.
  • Digital Object Identifier (doi)

    Author List

  • Chattopadhyay D; Langsley G; Carson M; Recacha R; DeLucas L; Smith C
  • Start Page

  • 937
  • End Page

  • 944
  • Volume

  • 56
  • Issue

  • 8