Technology considerations relevant to an exobiology surface-science approach for Europa

Academic Article


  • If Europa is to be of primary exobiological interest, namely, as a habitat for extant life, it is obvious that (a) a hydrosphere must prevail beneath the cryosphere for a long time, (b) internal energy sources must be present in a sufficient state of activity, and (c) a reasonable technical means must be available for assessing if indeed life does exist in the hypothesized hydrosphere. This discussion focuses on the last point, namely, technological issues, because the trend of the compounding evidence about Europa indicates that the first two points are likely to be true. First, we present a consideration of time-of-flight mass spectroscopy conducted in situ on the cryosphere surface of Europa during a first landed robotic mission. We assert that this is a reasonable technical means not only for exploring the composition of the cryosphere itself, but also for locating any biomolecular indicators of extant life brought to the surface through cryosphere activity. Secondly, this work also addresses practical issues inherent in any kind of instrumental interrogation of a surface whose properties are governed by radiation chemistry. This includes advocating the construction of a Europan surface simulator to familiarize instrumental system developers with the spacecraft- and instrument-scale conditions under which such an interrogation would take place on Europa. Such a simulator is mandatory in certification of the functional utility of a flight instrument. © Mary Ann Liebert, Inc.
  • Authors

    Digital Object Identifier (doi)

    Author List

  • Wdowiak TJ; Gerakines PA; Agresti DG; Clemett SJ
  • Start Page

  • 467
  • End Page

  • 476
  • Volume

  • 1
  • Issue

  • 4