Assessment of telomere length and factors that contribute to its stability

Academic Article


  • Short strands of tandem hexameric repeats known as telomeres cap the ends of linear chromosomes. These repeats protect chromosomes from degradation and prevent chromosomal end-joining, a phenomenon that could occur due to the end-replication problem. Telomeres are maintained by the activity of the enzyme telomerase. The total number of telomeric repeats at the terminal end of a chromosome determines the telomere length, which in addition to its importance in chromosomal stabilization is a useful indicator of telomerase activity in normal and malignant tissues. Telomere length stability is one of the important factors that contribute to the proliferative capacity of many cancer cell types; therefore, the detection and estimation of telomere length is extremely important. Until relatively recently, telomere lengths were analyzed primarily using the standard Southern blot technique. However, the complexities of this technique have led to the search for more simple and rapid detection methods. Improvements such as the use of fluorescent probes and the ability to sort cells have greatly enhanced the ease and sensitivity of telomere length measurements. Recent advances, and the limitations of these techniques are evaluated. Drugs that assist in telomere shortening may contribute to tumor regression. Therefore, factors that contribute to telomere stability may influence the efficiency of the drugs that have potential in cancer therapy. These factors in relation to telomere length are also examined in this analysis.
  • Digital Object Identifier (doi)

    Author List

  • Saldanha SN; Andrews LG; Tollefsbol TO
  • Start Page

  • 389
  • End Page

  • 403
  • Volume

  • 270
  • Issue

  • 3