Activation of ion transport systems during cell volume regulation

Academic Article


  • This review discusses the activation of transport pathways during volume regulation, including their characteristics, the possible biochemical pathways that may mediate the activation of transport pathways, and the relations between volume regulation and transepithelial transport in renal cells. Many cells regulate their volume when exposed to an anisotonic medium. The changes in cell volume are caused by activation of ion transport pathways, plus the accompanying osmotically drive water movement such that cell volume returns toward normal levels. The swelling of hypertonically shrunken cells is termed regulatory volume increase (RVI) and involves an influx of NaCl into the cell via either activation of Na-Cl, Na-K-2Cl cotransport systems, or Na+-H+ and Cl--HCO3- exchangers. The reshrinking of hypotonically swollen cells is termed regulatory volume decrease (RVD) and involves an efflux of KCl and water from the cell by activation of either separate K+ and Cl- conductances, a K-Cl cotransport system, or parallel K+-H+ and Cl--HCO3- exchangers. The biochemical mechanisms involved in the activation of transport systems are largerly unknown, however, the phosphoinositide pathway may be implicated in RVI; phorbol esters, cGMP and Ca2+ affect the process of volume regulation. Renal tubular cells, as well as the blood cells that traverse the medulla, are subjected to increasing osmotic gradients from the corticomedullary junction to the papillary tip, as well as changing interstitial and tubule fluid osmolarity, depending on the diuretic state of the animal. Medullary cells from the loop of Henle and the papilla can volume regulate by activating Na-K-2Cl cotransport or Na+-H+ and Cl--HCO3- exchange systems. Both Na-Cl and Na-K-2Cl cotransport systems have been identified in the medullary Loop of Henle and it is postulated that the Na-K-2Cl cotransport system predominates during RVI and affects transepithelial NaCl transport while the Na-Cl cotransport system may function during RVD in these cells.
  • Authors

    Digital Object Identifier (doi)

    Author List

  • Eveloff JL; Warnock DG
  • Volume

  • 252
  • Issue

  • 1 (21/1)