Improved high sensitivity analysis of polyphenols and their metabolites by nano-liquid chromatography-mass spectrometry

Academic Article


  • This study was conducted to assess the value of a high resolution, high mass accuracy time-of-flight analyzer in combination with nanoliquid chromatography for the analysis of polyphenols and their metabolites. The goal was to create a method that utilizes small volumes of biological fluids and provides a significant improvement in sensitivity compared with existing methods. Accordingly, nanoLC-MS and nanoLC-pseudo-multiple reaction monitoring (MRM) methods were developed that had a lower limit of quantification of 0.5 nM for several polyphenols and were linear over 2-3 orders of magnitude (R 2 > 0.999). Using urine samples, the ability to observe and quantify polyphenols in such a complex biological fluid depended on much narrower mass windows (0.050 amu or less) on a TOF analyzer than those used on a quadrupole analyzer (0.7 amu). Although a greater selectivity was possible with the low mass resolution of a triple quadrupole instrument using the MRM approach, for the daidzein metabolite O-DMA, a chromatographically resolvable second peak could only be substantially reduced by using a 0.01 amu mass window. The advantage of a TOF analyzer for product ion data is that the whole MSMS spectrum is collected at high mass accuracy and MRM experiments are conducted in silico after the analysis. © 2014 Elsevier Inc. All rights reserved.
  • Digital Object Identifier (doi)

    Author List

  • Wilson L; Arabshahi A; Simons B; Prasain JK; Barnes S
  • Start Page

  • 3
  • End Page

  • 11
  • Volume

  • 559