Mutational analysis of regulation of MHC and anti-viral genes

Academic Article

Abstract

  • CTL-mediated selection for loss of expression of Mta by H-2-heterozygous SV40-transformed mouse fibroblasts (line 24SV) produced an unusual phenotypic class of maternally transmitted Ag negative mutants defective in both MHC expression and in anti-viral activity. Severely reduced surface expression of class I MHC Ag from multiple loci of both haplotypes correlated with low levels of MHC H chain and β2-microglobulin mRNA. Inasmuch as IFN can up-regulate class I expression and some fibroblasts elaborate autocrine IFN-β, we examined whether IFN could restore wild-type expression of class I MHC Ag. However, IFN could not restore wild-type expression. Moreover, the fold-increases in class I Ag and mRNA expression were significantly reduced in mutant cells compared to wild-type cells. These results suggested that the mutants might have generalized defects in IFN response. Inasmuch as the induction of an anti-viral state is a hallmark of IFN responses, we exposed cells to IFN-α, -β, or -γ and challenged with virus. 24SV cells, exposed to any of the three IFNs, were completely protected from destruction by vesicular stomatitis, mengovirus or respiratory syncytial viruses. In contrast, MHC and anti-viral defective mutants could not be protected from virus-induced lysis by any IFN. Somatic cell hybridization analyses indicated that both basal MHC and IFN-inducible phenotypes were recessive to wild-type, and that a trans-acting regulatory factor required for basal MHC expression is defectively expressed in the mutants. Such a factor may integrate the organismal response to virus infection, encompassing both immune and nonimmune anti-viral responses.
  • Authors

    Published In

    Author List

  • Rodgers JR; Wyde PR; Rich RR
  • Start Page

  • 1979
  • End Page

  • 1986
  • Volume

  • 146
  • Issue

  • 6