Macroscopic limit cycle via pure noise-induced phase transitions

Academic Article


  • Bistability generated via a pure noise-induced phase transition is reexamined from the view of bifurcations in macroscopic cumulant dynamics. It allows an analytical study of the phase diagram in more general cases than previous methods. In addition, using this approach we investigate spatially extended systems with two degrees of freedom per site. For this system, the analytic solution of the stationary Fokker-Planck equation is not available and a standard mean field approach cannot be used to find noise-induced phase transitions. A different approach based on cumulant dynamics predicts a noise-induced phase transition through a Hopf bifurcation leading to a macroscopic limit cycle motion, which is confirmed by numerical simulation. © 2004 The American Physical Society.
  • Digital Object Identifier (doi)

    Author List

  • Kawai R; Sailer X; Schimansky-Geier L; Van den Broeck C
  • Start Page

  • 8
  • Volume

  • 69
  • Issue

  • 5