Triple-acting Lytic Enzyme Treatment of Drug-Resistant and Intracellular Staphylococcus aureus

Academic Article

Abstract

  • Multi-drug resistant bacteria are a persistent problem in modern health care, food safety and animal health. There is a need for new antimicrobials to replace over used conventional antibiotics. Here we describe engineered triple-acting staphylolytic peptidoglycan hydrolases wherein three unique antimicrobial activities from two parental proteins are combined into a single fusion protein. This effectively reduces the incidence of resistant strain development. The fusion protein reduced colonization by Staphylococcus aureus in a rat nasal colonization model, surpassing the efficacy of either parental protein. Modification of a triple-acting lytic construct with a protein transduction domain significantly enhanced both biofilm eradication and the ability to kill intracellular S. aureus as demonstrated in cultured mammary epithelial cells and in a mouse model of staphylococcal mastitis. Interestingly, the protein transduction domain was not necessary for reducing the intracellular pathogens in cultured osteoblasts or in two mouse models of osteomyelitis, highlighting the vagaries of exactly how protein transduction domains facilitate protein uptake. Bacterial cell wall degrading enzyme antimicrobials can be engineered to enhance their value as potent therapeutics.
  • Authors

    Published In

  • Scientific Reports  Journal
  • Digital Object Identifier (doi)

    Author List

  • Becker SC; Roach DR; Chauhan VS; Shen Y; Foster-Frey J; Powell AM; Bauchan G; Lease RA; Mohammadi H; Harty WJ
  • Volume

  • 6