Our research focuses on the base of the marine food web — microbial photosynthetic organisms called phytoplankton. We’re interested in how ecology and evolution intertwine to determine these organisms’ fates, and consequently, the fates of the vast communities they feed.
Our researchers make organisms evolve in the lab. We also get on boats and study our favorite green critters in their native habitats: some of the most exotic environments in the world. We leverage our skills in molecular biology and computation to try to predict what our world will look like 100 years from now.
Ongoing projects in the lab include experimental investigations of the Black Queen Hypothesis, which is a new theory of evolution that predicts that cooperation can evolve in communities that depend on “leaky” biological functions. We’re also interested in using laboratory evolution to find out how quickly important marine algal species can adapt to the changes humans are causing to their environments. One very new direction is the use of polar ice cores to find microbial fossils that allow us to study evolution over the past 100,000 years or so, including how bacteria have adapted to previous bouts of climate change (such as the ice ages). We’re very open-minded — if you’ve got research interests in microbial evolution and are looking for a lab to work in, send us an email at evolve@uab.edu and tell us your crazy ideas!
Experimental Evolution, Phytoplankton Ecophysiology, Discovery-based Microbiology Education